Exhibit 16

Transportation Land Development Environmental Services

imagination innovation energy Creating results for our clients and benefits for our communities

Vanasse Hangen Brustlin, Inc.

WETLANDS DELINEATION REPORT

Date:

October 31, 2009

(Revised March 11, 2010)

Project No .:

41479.42

Prepared For:

Ms. Alexandria Carter

Verizon Wireless 99 East River Drive

East Hartford, Connecticut 06108

Site Location:

East Woodstock - 445 Prospect Street, Woodstock, Connecticut

Site Map:

Wetland Sketch, dated August 7, 2009, revised March 8, 2010

Inspection Date:

August 7, 2009 and March 8, 2010

Field Conditions:

Weather: sunny, low 80's & low 40's

Snow Depth: 0 inches

General Soil Moisture: moist

Frost Depth: 0 inches

Type of Wetlands Identified and Delineated:

Connecticut Inland Wetlands and Watercourses

Tidal Wetlands

U.S. Army Corps of Engineers

Local Regulated Upland Review Areas: Wetlands: 100 feet

Watercourses (perennial): 125 feet

Field Numbering Sequence of Wetlands Boundary: Connecticut - WF 1 to 14 (8/7/09) & WF 15 to 30 (3/8/10)

[as depicted on attached wetland sketch map]

The classification systems of the National Cooperative Soil Survey, the U.S. Department of Agriculture, Natural Resources Conservation Service, County Soil Survey Identification Legend, Connecticut Department of Environmental Protection and United States Army Corps of Engineers New England District were used in this investigation.

All established wetlands boundary lines are subject to change until officially adopted by local, state, or federal regulatory agencies.

The wetlands delineation was conducted and reviewed by:

Dean Gustafson

Professional Soil Scientist

Enclosures

54 Tuttle Place Middletown, Connecticut 06457-1847 860.632.1500 a FAX 860.632.7879 email: info@vhb.com www.vhb.com

J:\41479.42\reports\wetlands\Wetland Delineation Report_rev031110.doc

Attachments

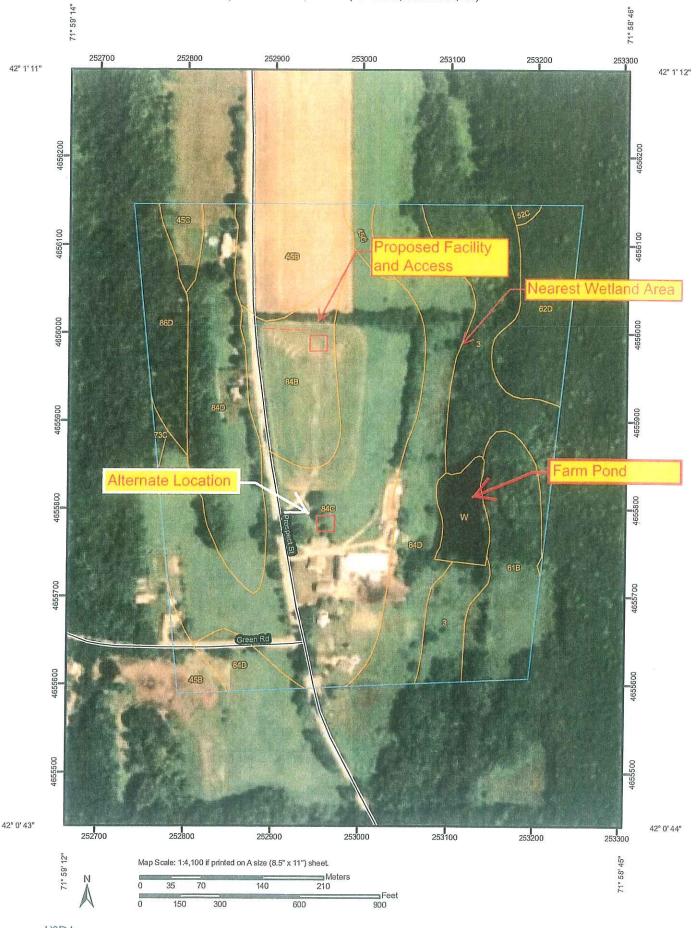
- Wetland Delineation Field Form D
- \triangleright
- A
- Soil Map Soil Report Wetland Delineation Sketch Map

Wetland Delineation Field Form

Project Address:	445 Prospec	ct Street , Connecticut	Project Num	ıber:	41479.42
Inspection Date:		009 & March 8, 2010	Inspector:		Dean Gustafson, PSS
Wetland I.D.:	Wetland 1				,
E' 110 1'''	777 14		t: 		
Field Conditions:		r: sunny, mid 80's			Depth: 0 inches
		Soil Moisture: moist		Frost	Depth: 0 inches
Type of Wetland I	Delineation:		\times		
		ACOE [1
		Tidal [
Field Numbering S	Sequence: WI	F 1 to 14 (8/7/09) & W.	F 15 to 30 (3/	8/10)	
WETLAND HYD	ROLOGY:				
NONTIDAL					
Intermittently Floo		Artificially Flooded		Pe	rmanently Flooded
Semipermanently 1	Flooded 🗌	Seasonally Flooded [Te	mporarily Flooded
Permanently Satura	ated 🗌	Seasonally Saturated	– seepage 🛛	Sea	asonally Saturated - perched
Comments:					
TIDAL					
Subtidal		Regularly Flooded		Irre	gularly Flooded
Irregularly Flooded					
Comments: N/A				- 1/	
WETLAND TYPI	E:				
					*
SYSTEM:		D: -			. 57
Estuarine		Riverine	Palus		rine 🛛
Lacustrine		Marine			
Comments:					
CLASS:			200		
Emergent		Scrub-shrub		Forest	ed 🖂
Open Water Disturbed		Disturbed		Wet Meadow	
Comments: Foreste	d swamp and	farm pond			
WATERCOURSE	TYPE:				
Perennial		Intermittent 🖂	r	Tidal [
	ttent flow fro	m north to south draini			into farm pond.
SPECIAL AQUAT			4	1	1
Vernal Pool	I LIMBIIA	Other	Т		
Comments: N/A					

Wetland Delineation Field Form (Cont.)

MAPPED SOILS:


SOIL SERIES (Map Unit Symbol)	WET	UP	NRCS MAPPED	FIELD IDD/ CONFIRMED
Ridgebury, Leicester, and Whitman soils, extremely stony (3)			\boxtimes	
Woodbridge fine sandy loam (45)		\boxtimes		\boxtimes
Paxton and Montauk fine sandy loams (84)		\boxtimes		

DOMINANT PLANTS:

Japanese barberry (Berberis thunbergii)
green ash (Fraxinus pennsylvanica)
winterberry (Ilex verticillata)
spinulous wood fern (Dryopteris carthusiana)
Jack in the pulpit (Arisaema triphyllum)
cinnamon fern (Osmunda cinnamomea)
reed canarygrass (Phalaris arundinacea)

WETLAND NARRATIVE:

Wetland 1 is a forested swamp located over 450 feet east of the proposed Verizon Wireless East Woodstock facility. The red maple swamp is a typical forested wetland community located along an old field edge. The southern end of the delineated wetland transitions to a dug farm pond which receives flows from the forested wetland and drains to the south. An alternate location for the Verizon facility close to one of the barns on the subject property approximately 600 feet south of the proposed location, is over 350 feet west of the wetland boundary associated with the farm pond. An earthen dam forms the pond's southern bank, impounding the surface water. A constructed outfall is located in the southeast corner of the pond. The western bank of the pond is dominated by reed canarygrass and multiflora rose with a few scattered young American elm trees. The farm pond may provide some warm-water finfish habitat and select amphibians (i.e., American bullfrog) although thick algae mats provide evidence that the pond is eutrophic with impaired water quality.

MAP LEGEND

Area of In	Area of Interest (AOI)	8	Very Stony Spot
	Alea of Interest (AOI)	÷	Wet Spot
Soils		r) 0	
	Soil Map Units	4	Other
Singula		Special	Special Line Features
	rount realures	e.	
Э	Blowout	د	duily
X	Borrow Pit		Short Steep Slope
×	Clay Spot	`	Other
<	3040 (5:)	7 1.1.1.1.1	0
4	Closed Dead	Political Features	satures
>	Good Depleasion	0	Cities
X	Gravel Pit	Water Features	ures
• ‡	Gravelly Spot		Oceans
0	Landfill	}	Streams and Canal
√,	Lava Flow	Transportation	ıtion
净	Marsh or swamp	‡	Rails
K	Mine or Quarry	}	Interstate Highways
0	Miscellaneous Water	>	US Routes
0	Perennial Water		Major Roads

MAP INFORMATION

Map Scale: 1:4,100 if printed on A size (8.5" × 11") sheet.

The soil surveys that comprise your AOI were mapped at 1:12,000.

Please rely on the bar scale on each map sheet for accurate map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: http://websoilsurvey.nrcs.usda.gov Coordinate System: UTM Zone 19N NAD83 This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: State of Connecticut Survey Area Data: Version 6, Mar 22, 2007

Date(s) aerial images were photographed: 7/17/2006

compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. The orthophoto or other base map on which the soil lines were

Local Roads

}

Rock Outcrop

Saline Spot Sandy Spot Severely Eroded Spot

Slide or Slip

Sinkhole

0 A ø

Sodic Spot

Stony Spot Spoil Area

Map Unit Legend

	State of Connecticut (CT	600)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
3	Ridgebury, Leicester, and Whitman soils, extremely stony	7.4	11.9%
45B	Woodbridge fine sandy loam, 3 to 8 percent slopes	4.3	7.0%
45C	Woodbridge fine sandy loam, 8 to 15 percent slopes	1.3	2.1%
52C	Sutton fine sandy loam, 2 to 15 percent slopes, extremely stony	0.1	0.2%
61B	Canton and Charlton soils, 3 to 8 percent slopes, very stony	4.6	7.4%
62D	Canton and Charlton soils, 15 to 35 percent slopes, extremely stony	3.8	6.2%
73C	Charlton-Chatfield complex, 3 to 15 percent slopes, very rocky	0.1	0.2%
84B	Paxton and Montauk fine sandy loams, 3 to 8 percent slopes	4.4	7.1%
84C	Paxton and Montauk fine sandy loams, 8 to 15 percent slopes	16.9	27.3%
84D	Paxton and Montauk fine sandy loams, 15 to 25 percent slopes	14.8	23.9%
86D	Paxton and Montauk fine sandy loams, 15 to 35 percent slopes, extremely stony	2.7	4.4%
VV	Water	1.4	2.3%
Totals for Area of Interest		61.9	100.0%

Map Unit Description (Brief)

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the selected area. The map unit descriptions in this report, along with the maps, can be used to determine the composition and properties of a unit. A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

The "Map Unit Description (Brief)" report gives a brief, general description of the major soils that occur in a map unit. Descriptions of nonsoil (miscellaneous areas) and minor map unit components may or may not be included. This description is written by the local soil scientists responsible for the respective soil survey area data. A more detailed description can be generated by the "Map Unit Description" report.

Additional information about the map units described in this report is available in other Soil Data Mart reports, which give properties of the soils and the limitations, capabilities, and potentials for many uses. Also, the narratives that accompany the Soil Data Mart reports define some of the properties included in the map unit descriptions.

Report—Map Unit Description (Brief)

State of Connecticut

Description Category: SOI

Map Unit: 3—Ridgebury, Leicester, and Whitman soils, extremely stony

Ridgebury, Leicester And Whitman Soils, Extremely Stony This map unit is in the New England and Eastern New York Upland, Southern Part Major Land Resource Area. The mean annual precipitation is 37 to 50 inches (940 to 1270 millimeters) and the average annual air temperature is 45 to 52 degrees F. (7 to 11 degrees C.) This map unit is 40 percent Ridgebury soils, 35 percent Leicester soils, 15 percent Whitman soils. 10 percent minor components. Ridgebury soils This component occurs on upland drainageway and depression landforms. The parent material consists of lodgement till derived from granite, schist, and gneiss. The slope ranges from 0 to 5 percent and the runoff class is very low. The depth to a restrictive feature is 20 to 30 inches to densic material. The drainage class is poorly drained. The slowest permeability within 60 inches is about 0.00 in/hr (very slow), with about 2.5 inches (low) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is about 3 inches. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 7s Typical Profile: 0 to 1 inches; slightly decomposed plant material 1 to 5 inches; fine sandy loam 5 to 14 inches; fine sandy loam 14 to 21 inches; fine sandy loam 21 to 60 inches; sandy loam Leicester soils This component occurs on upland drainageway and depression landforms. The parent material consists of melt-out till derived from granite, schist, and gneiss. The slope ranges from 0 to 5 percent and the runoff class is very low. The depth to a restrictive feature is greater than 60 inches. The drainage class is poorly drained. The slowest permeability within 60 inches is about 0.57 in/hr (moderate), with about 7.4 inches (high) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is about 9 inches. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 7s Typical Profile: 0 to 1 inches; moderately decomposed plant material 1 to 7 inches; fine sandy loam 7 to 10 inches; fine sandy loam 10 to 18 inches; fine sandy loam 18 to 24 inches; fine sandy loam 24 to 43 inches; gravelly fine sandy loam 43 to 65 inches; gravelly fine sandy loam Whitman soils This component occurs on upland drainageway and depression landforms. The parent material consists of lodgement till derived from gneiss, schist, and granite. The slope ranges from 0 to 2 percent and the runoff class is very low. The depth to a restrictive feature is 12 to 20 inches to densic material. The drainage class is very poorly drained. The slowest permeability within 60 inches is about 0.00 in/hr (very slow), with about 1.9 inches (very low) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is occasional. The minimum depth to a seasonal water table, when present, is about 0 inches. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 7s Typical Profile: 0 to 1 inches; slightly decomposed plant material 1 to 9 inches; fine sandy loam 9 to 16 inches; fine sandy loam 16 to 22 inches; fine sandy loam 22 to 60 inches; fine sandy loam

Map Unit: 45B—Woodbridge fine sandy loam, 3 to 8 percent slopes

Woodbridge Fine Sandy Loam, 3 To 8 Percent Slopes This map unit is in the New England and Eastern New York Upland, Southern Part Major Land Resource Area. The mean annual precipitation is 37 to 49 inches (940 to 1244 millimeters) and the average annual air temperature is 45 to 52 degrees F. (7 to 11 degrees C.) This map unit is 80 percent Woodbridge soils. 20 percent minor components. Woodbridge soils This component occurs on upland drumlin and hill landforms. The parent material consists of lodgement till derived from schist, granite, and gneiss. The slope ranges from 3 to 8 percent and the runoff class is medium. The depth to a restrictive feature is 20 to 40 inches to densic material. The drainage class is moderately well drained. The slowest permeability within 60 inches is about 0.00 in/hr (very slow), with about 3.9 inches (moderate) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is about 24 inches. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 2w Typical Profile: 0 to 7 inches; fine sandy loam 7 to 18 inches; fine sandy loam 18 to 26 inches; fine sandy loam 26 to 30 inches; fine sandy loam 30 to 43 inches; gravelly fine sandy loam 43 to 65 inches; gravelly fine sandy loam

Map Unit: 45C-Woodbridge fine sandy loam, 8 to 15 percent slopes

Woodbridge Fine Sandy Loam, 8 To 15 Percent Slopes This map unit is in the New England and Eastern New York Upland, Southern Part Major Land Resource Area. The mean annual precipitation is 37 to 49 inches (940 to 1244 millimeters) and the average annual air temperature is 45 to 52 degrees F. (7 to 11 degrees C.) This map unit is 80 percent Woodbridge soils. 20 percent minor components. Woodbridge soils This component occurs on upland drumlin and hill landforms. The parent material consists of lodgement till derived from schist, granite, and gneiss. The slope ranges from 8 to 15 percent and the runoff class is medium. The depth to a restrictive feature is 20 to 40 inches to densic material. The drainage class is moderately well drained. The slowest permeability within 60 inches is about 0.00 in/hr (very slow), with about 3.9 inches (moderate) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is about 24 inches. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 3e Typical Profile: 0 to 7 inches; fine sandy loam 7 to 18 inches; fine sandy loam 18 to 26 inches; fine sandy loam 26 to 30 inches; fine sandy loam 30 to 43 inches; gravelly fine sandy loam 43 to 65 inches; gravelly fine sandy loam

Map Unit: 52C—Sutton fine sandy loam, 2 to 15 percent slopes, extremely stony

Sutton Fine Sandy Loam, 2 To 15 Percent Slopes, Extremely Stony This map unit is in the New England and Eastern New York Upland, Southern Part Major Land Resource Area. The mean annual precipitation is 37 to 49 inches (940 to 1244 millimeters) and the average annual air temperature is 45 to 52 degrees F. (7 to 11 degrees C.) This map unit is 80 percent Sutton soils. 20 percent minor components. Sutton soils This component occurs on upland hill landforms. The parent material consists of melt-out till derived from granite, gneiss, and schist. The slope ranges from 2 to 15 percent and the runoff class is low. The depth to a restrictive feature is greater than 60 inches. The drainage class is moderately well drained. The slowest permeability within 60 inches is about 0.57 in/hr (moderate), with about 7.3 inches (high) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is about 24 inches. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 7s Typical Profile: 0 to 1 inches; moderately decomposed plant material 1 to 6 inches; fine sandy loam 6 to 12 inches; fine sandy loam 12 to 24 inches; fine sandy loam 24 to 28 inches; fine sandy loam 28 to 36 inches; gravelly fine sandy loam 36 to 65 inches; gravelly sandy

Map Unit: 61B—Canton and Charlton soils, 3 to 8 percent slopes, very stony

Canton And Charlton Soils, 3 To 8 Percent Slopes, Very Stony This map unit is in the New England and Eastern New York Upland, Southern Part Major Land Resource Area. The mean annual precipitation is 37 to 49 inches (940 to 1244 millimeters) and the average annual air temperature is 45 to 52 degrees F. (7 to 11 degrees C.) This map unit is 45 percent Canton soils, 35 percent Charlton soils. 20 percent minor components Canton soils This component occurs on upland hill landforms. The parent material consists of melt-out till derived from schist, granite, and gneiss. The slope ranges from 3 to 8 percent and the runoff class is low. The depth to a restrictive feature is greater than 60 inches. The drainage class is well drained. The slowest permeability within 60 inches is about 1.98 in/hr (moderately rapid), with about 5.6 inches (high) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is greater than 6 feet. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 6s Typical Profile: 0 to 1 inches; moderately decomposed plant material 1 to 3 inches; gravelly fine sandy loam 3 to 15 inches; gravelly loam 15 to 24 inches; gravelly loam 24 to 30 inches; gravelly loam 30 to 60 inches; very gravelly loamy sand Charlton soils This component occurs on upland hill landforms. The parent material consists of melt-out till derived from granite, schist, and gneiss. The slope ranges from 3 to 8 percent and the runoff class is low. The depth to a restrictive feature is greater than 60 inches. The drainage class is well drained. The slowest permeability within 60 inches is about 0.57 in/hr (moderate), with about 6.4 inches (high) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is greater than 6 feet. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 6s Typical Profile: 0 to 4 inches; fine sandy loam 4 to 7 inches; fine sandy loam 7 to 19 inches; fine sandy loam 19 to 27 inches; gravelly fine sandy loam 27 to 65 inches; gravelly fine sandy loam

Map Unit: 62D—Canton and Charlton soils, 15 to 35 percent slopes, extremely stony

Canton And Charlton Soils, 15 To 35 Percent Slopes, Extremely Stony This map unit is in the New England and Eastern New York Upland, Southern Part Major Land Resource Area. The mean annual precipitation is 37 to 49 inches (940 to 1244 millimeters) and the average annual air temperature is 45 to 52 degrees F. (7 to 11 degrees C.) This map unit is 45 percent Canton soils, 35 percent Charlton soils. 20 percent minor components Canton soils This component occurs on upland hill landforms. The parent material consists of melt-out till derived from schist, granite. and gneiss. The slope ranges from 15 to 35 percent and the runoff class is medium. The depth to a restrictive feature is greater than 60 inches. The drainage class is well drained. The slowest permeability within 60 inches is about 1.98 in/hr (moderately rapid), with about 5.6 inches (high) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is greater than 6 feet. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 7s Typical Profile: 0 to 1 inches; moderately decomposed plant material 1 to 3 inches; gravelly fine sandy loam 3 to 15 inches; gravelly loam 15 to 24 inches; gravelly loam 24 to 30 inches; gravelly loam 30 to 60 inches; very gravelly loamy sand Charlton soils This component occurs on upland hill landforms. The parent material consists of melt-out till derived from granite, schist, and gneiss. The slope ranges from 15 to 35 percent and the runoff class is medium. The depth to a restrictive feature is greater than 60 inches. The drainage class is well drained. The slowest permeability within 60 inches is about 0.57 in/hr (moderate), with about 6.4 inches (high) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is greater than 6 feet. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 7s Typical Profile: 0 to 4 inches; fine sandy loam 4 to 7 inches; fine sandy loam 7 to 19 inches; fine sandy loam 19 to 27 inches; gravelly fine sandy loam 27 to 65 inches; gravelly fine sandy loam

Map Unit: 73C—Charlton-Chatfield complex, 3 to 15 percent slopes, very rocky

Charlton-Chatfield Complex, 3 To 15 Percent Slopes, Very Rocky This map unit is in the New England and Eastern New York Upland, Southern Part Major Land Resource Area. The mean annual precipitation is 37 to 49 inches (940 to 1244 millimeters) and the average annual air temperature is 45 to 52 degrees F. (7 to 11 degrees C.) This map unit is 45 percent Charlton soils, 30 percent Chatfield soils. 25 percent minor components. Charlton soils This component occurs on upland hill landforms. The parent material consists of melt-out till derived from granite, schist and gneiss. The slope ranges from 3 to 15 percent and the runoff class is low. The depth to a restrictive feature is greater than 60 inches. The drainage class is well drained. The slowest permeability within 60 inches is about 0.57 in/hr (moderate), with about 6.4 inches (high) available water capacity. The weighted average shrinkswell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is greater than 6 feet. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 6s Typical Profile: 0 to 4 inches; fine sandy loam 4 to 7 inches; fine sandy loam 7 to 19 inches; fine sandy loam 19 to 27 inches; gravelly fine sandy loam 27 to 65 inches; gravelly fine sandy loam Chatfield soils This component occurs on upland hill and ridge landforms. The parent material consists of melt-out till derived from gneiss, granite, and schist. The slope ranges from 3 to 15 percent and the runoff class is low. The depth to a restrictive feature is 20 to 40 inches to bedrock (lithic). The drainage class is well drained. The slowest permeability within 60 inches is about 0.57 in/hr (moderate), with about 3.3 inches (moderate) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is greater than 6 feet. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 6s Typical Profile: 0 to 1 inches; highly decomposed plant material 1 to 6 inches; gravelly fine sandy loam 6 to 15 inches; gravelly fine sandy loam 15 to 29 inches; gravelly fine sandy loam 29 to 36 inches; unweathered bedrock

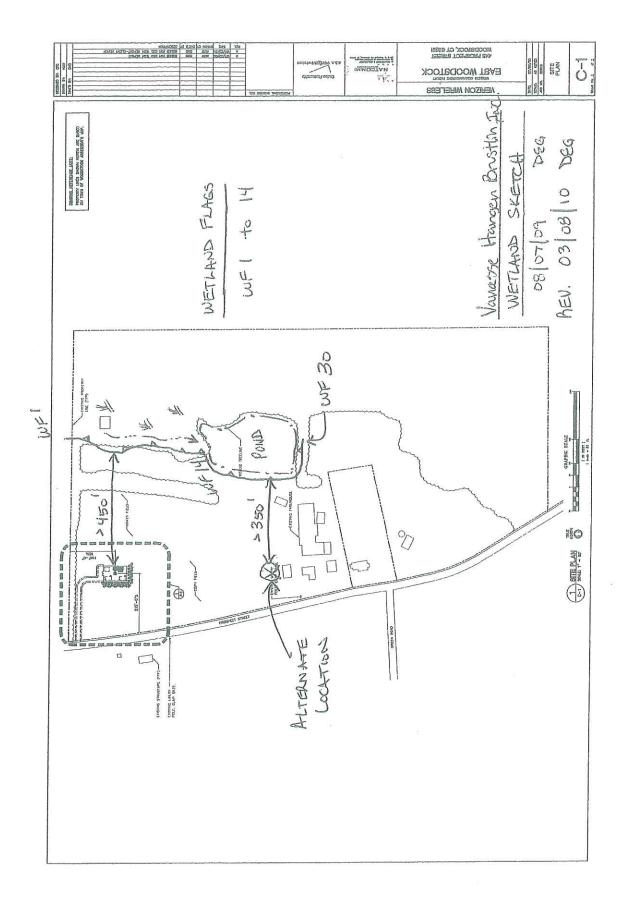
Map Unit: 84B—Paxton and Montauk fine sandy loams, 3 to 8 percent slopes

Paxton And Montauk Fine Sandy Loams, 3 To 8 Percent Slopes This map unit is in the New England and Eastern New York Upland, Southern Part Major Land Resource Area. The mean annual precipitation is 35 to 50 inches (889 to 1270 millimeters) and the average annual air temperature is 45 to 52 degrees F. (7 to 11 degrees C.) This map unit is 55 percent Paxton soils, 30 percent Montauk soils. 15 percent minor components. Paxton soils This component occurs on upland hill and drumlin landforms. The parent material consists of lodgement till derived from granite, gneiss, and schist. The slope ranges from 3 to 8 percent and the runoff class is medium. The depth to a restrictive feature is 20 to 40 inches to densic material. The drainage class is well drained. The slowest permeability within 60 inches is about 0.00 in/hr (very slow), with about 3.4 inches (moderate) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is about 24 inches. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 2e Typical Profile: 0 to 8 inches; fine sandy loam 8 to 15 inches; fine sandy loam 15 to 26 inches; fine sandy loam 26 to 65 inches; gravelly fine sandy loam Montauk soils This component occurs on upland hill and drumlin landforms. The parent material consists of sandy lodgement till derived from granite and gneiss. The slope ranges from 3 to 8 percent and the runoff class is low. The depth to a restrictive feature is 20 to 38 inches to densic material. The drainage class is well drained. The slowest permeability within 60 inches is about 0.00 in/hr (very slow), with about 3.3 inches (moderate) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is about 27 inches. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 2e Typical Profile: 0 to 4 inches; fine sandy loam 4 to 14 inches; fine sandy loam 14 to 25 inches; sandy loam 25 to 39 inches; gravelly loamy coarse sand 39 to 60 inches; gravelly sandy loam

Map Unit: 84C—Paxton and Montauk fine sandy loams, 8 to 15 percent slopes

Paxton And Montauk Fine Sandy Loams, 8 To 15 Percent Slopes This map unit is in the New England and Eastern New York Upland, Southern Part Major Land Resource Area. The mean annual precipitation is 35 to 50 inches (889 to 1270 millimeters) and the average annual air temperature is 45 to 52 degrees F. (7 to 11 degrees C.) This map unit is 55 percent Paxton soils, 30 percent Montauk soils. 15 percent minor components. Paxton soils This component occurs on upland hill and drumlin landforms. The parent material consists of lodgement till derived from granite, gneiss, and schist. The slope ranges from 8 to 15 percent and the runoff class is medium. The depth to a restrictive feature is 20 to 40 inches to densic material. The drainage class is well drained. The slowest permeability within 60 inches is about 0.00 in/hr (very slow), with about 3.4 inches (moderate) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is about 24 inches. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 3e Typical Profile: 0 to 8 inches; fine sandy loam 8 to 15 inches; fine sandy loam 15 to 26 inches; fine sandy loam 26 to 65 inches; gravelly fine sandy loam Montauk soils This component occurs on upland hill and drumlin landforms. The parent material consists of sandy lodgement till derived from granite and gneiss. The slope ranges from 8 to 15 percent and the runoff class is low. The depth to a restrictive feature is 20 to 38 inches to densic material. The drainage class is well drained. The slowest permeability within 60 inches is about 0.00 in/hr (very slow), with about 3.3 inches (moderate) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is about 27 inches. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 3e Typical Profile: 0 to 4 inches; fine sandy loam 4 to 14 inches; fine sandy loam 14 to 25 inches; sandy loam 25 to 39 inches; gravelly loamy coarse sand 39 to 60 inches; gravelly sandy loam

Map Unit: 84D—Paxton and Montauk fine sandy loams, 15 to 25 percent slopes


Paxton And Montauk Fine Sandy Loams, 15 To 25 Percent Slopes This map unit is in the New England and Eastern New York Upland, Southern Part Major Land Resource Area. The mean annual precipitation is 35 to 50 inches (889 to 1270 millimeters) and the average annual air temperature is 45 to 52 degrees F. (7 to 11 degrees C.) This map unit is 55 percent Paxton soils, 30 percent Montauk soils. 15 percent minor components. Paxton soils This component occurs on upland hill and drumlin landforms. The parent material consists of lodgement till derived from granite, gneiss, and schist. The slope ranges from 15 to 25 percent and the runoff class is medium. The depth to a restrictive feature is 20 to 40 inches to densic material. The drainage class is well drained. The slowest permeability within 60 inches is about 0.00 in/hr (very slow), with about 3.4 inches (moderate) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is about 24 inches. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 4e Typical Profile: 0 to 8 inches; fine sandy loam 8 to 15 inches; fine sandy loam 15 to 26 inches; fine sandy loam 26 to 65 inches; gravelly fine sandy loam Montauk soils This component occurs on upland hill and drumlin landforms. The parent material consists of sandy lodgement till derived from granite and gneiss. The slope ranges from 15 to 25 percent and the runoff class is low. The depth to a restrictive feature is 20 to 38 inches to densic material. The drainage class is well drained. The slowest permeability within 60 inches is about 0.00 in/hr (very slow), with about 3.3 inches (moderate) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is about 27 inches. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 4e Typical Profile: 0 to 4 inches; fine sandy loam 4 to 14 inches; fine sandy loam 14 to 25 inches; sandy loam 25 to 39 inches; gravelly loamy coarse sand 39 to 60 inches; gravelly sandy loam

Map Unit: 86D—Paxton and Montauk fine sandy loams, 15 to 35 percent slopes, extremely stony

Paxton And Montauk Fine Sandy Loams, 15 To 35 Percent Slopes, Extremely Stony This map unit is in the New England and Eastern New York Upland, Southern Part Major Land Resource Area. The mean annual precipitation is 35 to 56 inches (889 to 1422 millimeters) and the average annual air temperature is 45 to 52 degrees F. (7 to 11 degrees C.) This map unit is 55 percent Paxton soils, 30 percent Montauk soils. 15 percent minor components. Paxton soils This component occurs on upland hill and drumlin landforms. The parent material consists of lodgement till derived from granite, gneiss, and schist. The slope ranges from 15 to 35 percent and the runoff class is very high. The depth to a restrictive feature is 20 to 40 inches to densic material. The drainage class is well drained. The slowest permeability within 60 inches is about 0.00 in/hr (very slow), with about 3.4 inches (moderate) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is about 24 inches. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 7s Typical Profile: 0 to 8 inches; fine sandy loam 8 to 15 inches; fine sandy loam 15 to 26 inches; fine sandy loam 26 to 65 inches; gravelly fine sandy loam Montauk soils This component occurs on upland hill and drumlin landforms. The parent material consists of sandy lodgement till derived from granite and gneiss. The slope ranges from 15 to 35 percent and the runoff class is medium. The depth to a restrictive feature is 20 to 38 inches to densic material. The drainage class is well drained. The slowest permeability within 60 inches is about 0.00 in/hr (very slow), with about 3.3 inches (moderate) available water capacity. The weighted average shrink-swell potential in 10 to 60 inches is about 1.5 LEP (low). The flooding frequency for this component is none. The ponding hazard is none. The minimum depth to a seasonal water table, when present, is about 27 inches. The maximum calcium carbonate within 40 inches is none. The maximum amount of salinity in any layer is about 0 mmhos/cm (nonsaline). The Nonirrigated Land Capability Class is 7s Typical Profile: 0 to 4 inches; fine sandy loam 4 to 14 inches; fine sandy loam 14 to 25 inches; sandy loam 25 to 39 inches; gravelly loamy coarse sand 39 to 60 inches; gravelly sandy loam

Data Source Information

Soil Survey Area: State of Connecticut Survey Area Data: Version 6, Mar 22, 2007

